If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+10n-112=0
a = 1; b = 10; c = -112;
Δ = b2-4ac
Δ = 102-4·1·(-112)
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{137}}{2*1}=\frac{-10-2\sqrt{137}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{137}}{2*1}=\frac{-10+2\sqrt{137}}{2} $
| 4z-29=113 | | 10+9-2r=-9-9r | | -6+6n=8n-8 | | 25t-5t^2=15 | | -2+10-17=x | | 4=10−3p | | 7r+7=-9+5r | | 2-0.25x^2=x | | 36+11z=663 | | 3y+52=115 | | -7k=-140 | | (45+.25x)=(70+.15x) | | 5b4b+5=1+5b4, | | 2x+4/3=2 | | 6x+9-x+8=17+5x | | 16(d+6)=656 | | -7-4x^2=-239 | | 2x+5= | | x/3=-1/2x+7 | | x+18=-5x–9 | | 2x+5= | | 4x-28=112 | | (3+a)(8-2a)=0 | | 4-5a=11 | | 2x+5= | | 3y*2+2y=180 | | -8=-6+x | | -43=6-7y | | 7(12x+2)=84x-3 | | 21x-6=90 | | 14w+5(w-2)=17-(w+7) | | 6x+3=6x-4 |